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Abstract 

In (1) a displacement control system is described for the seismic 
isolation of buildings that produces a nonlinear damping force of a 
complicated nature. 

It is proposed to approximate such a damping force by a combination of 
three different types of damping: linear viscous damping, constant 
Coulomb friction, and linear Coulomb friction. The term linear Coulomb 
friction is used for a damping that increases linearly with the dis-
placement but is in phase with the velocity. This approximation leads 
to a nonlinear differential equation that can be solved exactly for 
certain cases. 

The exact solution to the steady-state vibration of a single-degree-
of-freedom system governed by this differential equation is given and 
two possibilities for an equivalent linearization of the nonlinear 
problem are discussed and compared with the exact solution. 

The equivalent linearization of the proposed general damping model are 
shown to give excellent results for medium levels of damping. For large 
levels of damping compromises in trying to model the exact solution 
have to be accepted that will largely depend on the particular method 
of linearization used. 

For most practical purposes the methods discussed offer a very simple 
and efficient way to define an equivalent viscous damping ratio that 
could be used in a standard linear analysis to quite accurately pre-
dict the response of a system which involves a rather complicated, non-
linear type of damping. 
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Introduction 

Base isolation has long been suggested as an effective approach for 
aseismic design of structures. It involves, essentially, a compromise 
between the forces induced within a superstructure and the relative 
displacement requirements imposed at the base. In (1) a frictionally 
damped system has been considered for controlling the relative dis-
placement at the base of an isolated structure and for preventing 
catastrophic collapse in the event of an earthquake which is greater 
in intensity than the isolation system was designed for. The downward 
deflection of this system associated with the relative displacements 
at the base of a structure can be utilized to apply a frictional damp-
ing force which steadily increases with increasing relative dis-
placements at the base. 
The total damping force of such a system can thus be approximated by 
a combination of three effects: a linear viscous damping force associa-
ted with the isolation system, a constant frictional force (constant 
Coulomb damping) and a frictional force which increases with the dis-
placement (linear Coulomb damping) associated with a sliding friction 
system. 

Viscous, constant Coulomb and linear Coulomb damping 

The damping force described above can mathematically be described by 
the following expression 

Fa = (5C sign(i)(F + Cki 

— — F, — F, — F,
(1) 

where 

— viscous damping force c — viscous damping constant 

F, — constant Coulomb friction force F — frictional force at zero deflection 

F, — linear Coulomb friction force c k slope of the linearly increasing damping force 

The relation between the Coulomb frictional forces and the correspon-
ding displacement resulting from this expression is given in Fig. 1 
and experimentally recorded curves to be approximated by this model 
are shown in Fig. 3. These curves were taken from (1). 

When this model is incorporated into the dynamic analysis of a single-
degree-of-freedom system the differential equation of motion is as 
follows 

?poi+ loc+ sign(i)(F+Ckl xi) — f(t) (231 

or 

3(+2f +(.0 3(1 ± 4) ± (fild .• (A 
(21?) 
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where 

m mass of the system 

k - spring stiffness of the system  

= coefficient of viscous friction 

natural frequency wo -- 

- coefficient of linear Coulomb friction 

k is the slope of the linearly increasing friction) 

F - absolute value of constant Coulomb friction force 

F x'  - 
k 

A physical representation of this equation of motion is shown in 
Fig. 2. 

Steady State Response  

The problem defined by equation (2) is piecewise linear locally, al-
though nonlinear globally. Hence, an exact solution can be attempted 
by considering each linear piece of the motion separately and forming 
the appropriate continuity conditions. 
The basic assumptions underlying a steady state analysis are: 1) that 
a "steady state" can actually be achieved by the system; 2) that the 
system will move at the frequency of the exciting force and 3) that 
the motion will be symmetrical for each half-cycle. Using these assump-
tions Eqn. (2) can be solved for a particular exciting force and the 
general solution can be adjusted by the appropriate boundary condi-
tions. The forcing function chosen in this analysis was 

fO-PcmIs(roP4-0) (3) 

where (1) is some unknown phase angle 

Hence we have the following differential equation governing this 
type of motion 

.ii+2twoi+wa(1±C)x±wix,. weacos(w1+0) 

where 

a = — 
k 

and the signs have to be adjusted according to Eqn. (2a). 

Considering only the motion for that half-cycle where the velocity 
is negative (i.e. from the maximum displacement xo  to the minimum 
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displacement -x0) and assuming the motion to by symmetrical for the 
other half-cycle the following complete solution is obtained 

xi(t)= e-t"r(CisincuTir + C2  COSW + -II- COS kr4-0-0-) + 
q 

for x04x1(640 and i1 (t)50 

where 

q--
1
(1-C-p2)

2 
 +(2pf) 

2j1/2 

W COOV1-C-f 

p- --"L frequency ratio 

and 

-1 -tan 2f3
1_c_p2 

 

_ 1 xe ,cc 

X2(/) e 6.1)(")(C1 SiI1W;(t-t1) + C2  COSW;(1- 

+ —a cosk t+06-01 + x,+ q+ 

for 0<x2(1)4-xo 

where 

and *2(040 

q+=111-4-C-p21 +(2pf( 2
r 

e -un- 
2fp 

l+ 
 

f$ 2 
1 xe  

l+f 

   

The following initial conditions exist for Eqns. (4) 

x1(r-0) xo 

x2(t-t i ) 0 

X( t=0) 0 

zz ( t—t,) V0  

These can be used to determine the constants CI  through C4  

C f— x0  — x—  — — cos( 4— „ ,  + — w—
n  

co 9 q 01; 

C2 xo - - -a- COS (0-91 
q 

Vo 600 C3  .. - Xc+  
(.0 fj 

+ —a —4- 
I

1
—fwocos(o) :1+0-01 ca .(1 + w sin( q  + 0  

(4a)  

(4b)  

(5) 
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C4 — — .X7 COS(0.1t1+4.—e+) 

Furthermore, the following continuity conditions for Eqns. (4) exist: 

x1 (1-11) =. 0 

x2(t— rd —  

11(r— ti) Vo — 

*20-0— 0 
(6) 

Different forms of steady state motion can be obtained for frictional-
ly damped systems. The simplest form is that the system moves conti-
nously and does not come to a stop for a finite period of time. For 
this type of motion, called non-stop motion, the following condition 

tom -- (7) 

must be true. 
Another possible form would be that the motion comes to a single stop 
for a finite period of time during one half-cycle, called one-stop mo-
tion. For this type of motion not only the velocity but also the ac-
celeration at time t = 0 can be assumed to be equal to zero since the 
motion is assumed to have stopped for a finite period of time. Hence, 
for one-stop motion the following condition must hold. 

x0(1-0 — x, — a costh (8) 

Other more complicated forms of steady state solutions might be pos-
sible and they might involve more than a single stop per half-cycle. 
Den Hartog (2) showed experimentally that one-stop motion as well as 
two-stop motion exists. The latter, however, occured only for low fre-
quency excitation which is usually not important for practical purpo-
ses. Therefore, types of motion with more than one stop per half-cyle 
are not considered in the following. 

Eqns. (5)-(8) can be used in Eqns. (4) to set up a system of 5 trans-
cendental equations in the unknowns xo, vo, t1, 0 and to. This can be 
solved, for example, using Newton's method. To assure convergence C 
and xo  were applied step-wise starting from the linear case (C=xc=0) 
and each intermediate solution was obtained iteratively. For the de-
cision if no-stop or one-stop motion was in effect and hence if Eqn. 
(7) or (8) had to be taken the acceleration a time t = 0 was monitored. 
As long as no-stop motion was in effect this acceleration had to be 
negative for the entire part of the motion considered. 
As soon as the frictional damping level was so large that no-stop mo-
tion could not exist anymore, the acceleration at time t = 0 changed 
its sign in the numerical analysis which was the indication that no-
stop motion could not exist anymore and hence Enq.(8) had to be taken 
in the solution process instead of Eqn. (7). 

On example each is given for the solution of a particular case of no-
stop motion (Fig. 4a) and one-stop motion (Fig. 4b). 
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Equivalent Linearization  

For many practical purposes the use of nonlinear design techniques is 
not acceptable for design office applications. Particularly during the 
preliminary design phases the estimates of gross features of the res—
ponse are often more important than an accurate representation of the 
response of the system. Therefore, an equivalent linearization of the 
nonlinear problem is often of great practical importance. 
The general concept of equivalent linearization and its application is 
discussed in detail in the literature. 

Here, only a brief summary of two possible linearization procedures 
will be given for the case of the steady state vibration discussed 
above. 

a) equating work done per cyle 

The most popular and well known general linearization method re—
places the actual damping force Fd  by an equivalent viscous force 
cic in such a way that the equivalent viscous force does the same 
work per cycle as the actual damping force Fd. 

The work done by the actual damping force during one cycle is given by 
T 

W,,, —f Fd  dr -. f Fdi dt (9) 
o
  

The work done by the equivalent viscous force during one cycle is 
given by 

Using Eqn. (1) 
sinusoidal the 

Equating these 
for feg  gives 

T T 
W,,,, f Cegir I dt — f 2mtoof eq.k2  dt (10) 

o o 
in Eqn. (9) and assuming the resulting motion x to be 
following results will be obtained 

W., —2 mfmo (oxlip. + 4x0F + 2; kxj 

wm  —2tnemwootxer 
two expression and resolving the resulting equation 

2xr  
feg = e + - + —2— 10x0 1r$ 

This result for the equivalent viscous damping ratio still contains the 
unknown amplitude xo  in the part of the solution corresponding to the 
constant Coulomb frictional force. 
Using the assumption of sinusoidal motion again this amplitude can be 
approximated by the following expression 

r1/2  
X0  — a{{1—p2)

2
M eg) + (2 2  

With this expression for xo  used in Eqn. (11) the result will be a 
quadratic equation in f m  , which can be solved easily for the 
equivalent viscous damping ratio. 

(12) 
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b) least squares solution 

If an exact solution of the problem is available a more elaborate 
linearization procedure can be used. 
A continuous least square approximation between the known exact so-
lution and an equivalent linear solution given in terms of a vari-
able equivalent damping ratio can be carried out. If the least 
square approximation is limited to one half-cycle of the motion 
because of the symmetry of the problem then the minimization pro-
cess is defined by 

2 
min T12  lx„,(t) — (f,, dt 

o 

Where xe.„(0 is the exact solution given above and xdc(fm,t) is the 
equivalent linear solution given as a function of time and the equiva-
lent linear damping ratio. The minimization with respect to the equiva-
lent damping ratio f, is given by 

ax 
25 lx,„(t)-- tvi x,(f ,6I --IL dr-0 a

tm 
 

The minimization process can be seen to be equivalent to minimizing 
the area between the exact and the equivalent linear solution as a 
function of the equivalent damping ratio (eq. 

Fig. 5 shows dynamic magnifaction curves and the corresponding equiva-
lent damping ratios found by a least square approximation for a speci-
fic case. 

Example:  

Figs. (3a-c) show hysteresis curves that were published in (1). These 
curves were experimentally recorded and show the damping forces asso-
ciated with rubber bearings (3a) and with a sliding friction system 
(3b and c) with different clearences between the structure and the 
sliding friction system. 
If Eqns. (11) and (12) are used for an equivalent linearization of the 
problem and if it is assumed that the system is at resonance (S =1) the 
following expression is found for the equivalent damping ratio 

4 F 
w k a 

The viscous damping ratio ( can be found from the area of the ellipse 
in Fig. (3a). 
The constant friction force F and the linear friction parameter can be 
approximated from Fig. (3c). For the determination of the linear fric-
tion parameter C the slope corresponding to 2/3 of the peak value of 
the damping force is taken rather than the slope corresponding to the 
peak value itself. This is done since the variation of the damping 
force corresponding to C is linear. If we select that linear variation 
for the hysteresis loop that has the same area and hence energy as the 
quadratic variation we arrive at the factor 2/3 for the peak displace- 
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ment. 
With these simple approximations we obtain the following results. 

t =5% 

2/3 • 2.0  

2.88 • 2.33 
0.20 

k = 2.88 (see (1) ) 

F = 0. (see Fig. 3b) 

F = 1. (see Fig. 3c) 

The static deflection for the cyclic excitation was assumed to be 
a = 1, which results in a ratio F/P = 35% for this specific case. 
Therefore, we obtain for Fig. 3b 

fm 0.05 +
02 

 = 11% 

and for Fig. 3c 

0.05 + 0.20  

feq  

 

- 20% 

 

1
4 • 1.0  
n • 2.88 

Using these results in a spectral analysis for the fundamental frequen-
cy (w = 0.64 Hz) to estimate the peak displacements corresponding to 
the equivalent damping ratios above and comparing these results with 
the recorded peak displacements taken from Figs. 3b and c, we obtain 

(x
max

) recorded f (x
max

) equivalent s 

3b 2.77 in 11% 2.54 in 

3c 2.33 in 20% 2.08 in 

In view of the fact that the damping relation as expressed by the 
curves in Figs. 3b and c has to be approximated by the relation corres-
ponding to linear viscous damping which is an ellipse (see Fig. 3a), 
the agreement between the results is surprisingly good. 

Conclusion 

The exact solution to the nonlinear problem outlined in this paper is 
certainly not a solution suitable for practical design purposes. It is, 
however, a very important tool for establishing equivalent linear so-
lutions to be used for practical design purposes. The quality of an 
equivalent linear solution cannot be judged unless the exact solution 
is known. 

Both linearization methodes discussed were seen to give virtually iden-
tical solutions for reasonably small levels of damping ( fa 4;20%). 
These solutions are in very good agreement with the exact solution. For 
very large levels of damping the considerable additional effort in-
volved with a least square approximation of the problem might be appro-
priate. Even for those cases, however, the simple solution using the 
work done per cycle delivers results of satisfactory accuracy for many 
practical purposes. This is demonstrated for a case of large damping in 
Figs. 6a and b. These figures show a time history solution for one 
complete cycle of the exact and the equivalent linear solutions. 
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